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A simplified model is developed for an alveolar liquid lining undergoing cyclic
stretching which mimics breathing motions. A thin, viscous film coats an extensible
alveolar wall with small aspect ratio, ε. Scaling analysis and asymptotic theory are
used to describe the interface profile and surfactant distribution during the oscillation
cycle for either insoluble or soluble surfactants. The flow consists of two distinct
regimes: an outer region away from the rigid endwalls where flow is near-parallel and
a boundary-layer region at the rigid endwalls where flow is non-parallel. The system
is solved asymptotically in the limit of ε � 1 and small strain amplitudes, ∆ � 1. For
leading order in ε, steady streaming vortical flows are found at O(∆2) and their size,
number and flow direction depend on the system parameter values. This preliminary
model can be useful for understanding alveolar transport characteristics for slowly
diffusing molecules with large Péclet number, such as endogenous surfactants and
proteins as well as delivered surfactants, drugs and genetic material that may occur
in various therapies or partial liquid ventilation. The flow pattern also provides a
pathway for cell–cell signalling within the alveolus.

1. Introduction
The thin liquid layer coating the alveolar wall is an essential feature in alveolar

homeostasis. It is the compartment between the alveolar cell surface and the air–liquid
interface where surface tension dominates lung mechanical behaviour to a large extent.
Surfactants and proteins produced and absorbed by alveolar type II cells traverse the
liquid layer in either direction as part of their normal metabolism (Wright & Clements
1987; Lewis, Ikegami & Jobe 1992) that keeps interfacial surface tensions low and
the normal lung, therefore, fairly compliant. Because of their size and complexity, the
surfactants and proteins diffuse quite slowly compared to respiratory gases, which
must also cross this liquid barrier. Thus, convective transport via flows across the
liquid layer for large molecules is an important aspect of alveolar homeostasis. Also,
flow parallel to the cellular boundaries provides a potential route for cell–cell signalling
since bioactive molecules produced by an alveolar cell can influence its neighbours.
Hence, some understanding of possible flow patterns in the alveolar liquid lining can
lead to a better appreciation of overall pulmonary behaviour.

In addition to normal or abnormal homeostasis, there are several clinical method-
ologies that involve delivery of large molecular species to the alveoli via the airways.
Examples are surfactant replacement therapy (SRT) (Zelter et al. 1990; Corbet et al.
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Figure 1. (a) Respiratory bronchiole and alveoli. We study the alveolus ‘A’ which is in a cluster
of alveoli. The alveolus ‘B’ is directly attached to the airway, and is studied by Podgorski &
Gradon (1993). (b) A cluster of several alveoli. The insolated alveolus is used to develop a
simplified model problem.
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Figure 2. A stretchable two-dimensional liquid-filled slot in the presence of insoluble or
soluble surfactants.

1991; Jobe 1993; Halpern, Jensen & Grotberg 1998), partial liquid ventilation (PLV)
(Mates et al. 1994; Hirschl et al. 1995; Shaffer & Wolfson 1996; Tarczy-Hornoch
et al. 1998) which may also include drug or gene delivery (Wolfson, Greenspan &
Shaffer 1996; Fox et al. 1997; Lisby et al. 1997) and inhaled administration of various
medications or genetic material (Meisner, Pringle & Mezei 1989; Davis et al. 1992;
Flotte 1993; Edwards et al. 1997; Waldrep et al. 1997; Yu & Chien 1997; Raczka et
al. 1998). In all of these examples, the role that alveolar liquid lining flow patterns
may play in the delivery process is unknown.

The cluster of alveoli, or alveolar sac, highlighted in figure 1(a) and shown in
figure 1(b), is a representative of the termination of the bronchial tree. A single
alveolus is approximately 200 µm in diameter and is made up of both type I and II
cells. Type I cells comprise about 90% of the alveolar surface while type II cells make
up the remaining 10% (Crapo et al. 1982). Therefore, a typical alveolar membrane
surface is made of many alveolar cells and the liquid film (shaded layer) covers them all
as in figure 2. The liquid film, then, is a potential route of cell–cell communication and
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the present model will address flows in the film that can provide such transport and
signal pathways.

The purpose of our study is to examine a model of alveolar liquid flow resulting
from breathing motions in concert with the influence of surface tension, both from
capillarity and Marangoni effects. The flow of the liquid lining along airways often
has similar flow mechanisms to the alveolar flow. It has been extensively studied,
particularly for surfactant transport. When surfactant is instilled in the trachea,
forced air and gravity dominate the flow in the upper airways while capillary and
Marangoni flows dominate in the smaller airways. Marangoni spreading without in-
cluding capillarity and breathing motions has been studied by Borgas & Grotberg
(1988), Gaver & Grotberg (1990), Halpern & Grotberg (1992), Jensen & Grotberg
(1992, 1993), Espinosa et al. (1993), Grotberg, Halpern & Jensen (1995) and
Bull et al. (1999). These models employed lubrication theory for describing the evo-
lution of the liquid layer and surfactant distribution.

Additional models including oscillatory wall strain can be found in Gradon &
Podgorski (1989) and Podgorski & Gradon (1990, 1991). Although the Gradon
& Podgorski (1989) and Podgorski & Gradon (1990) models simplified the alveolar
geometry to be locally planar, the predictions behaved well in predicting the optimal
alveolar size for liquid clearance. Their subsequent work (Podgorski & Gradon 1993)
applied a spherical model and found similar qualitative features to their planar models.
The model in Podgorski & Gradon (1993) predicts that fluid and surfactants are
pumped out of the alveolus owing to Marangoni flows generated by wall oscillations.
Such a result corresponds to an alveolus similar to that labelled ‘B’ in figure 1(a), one
that is connected directly to an airway whose ability to take new fluid and surfactant
is not limited by their assumptions. It is more difficult to envisage that model as
pertaining to an alveolus similar to that labelled ‘A’ in figure 1(a) which is surrounded
by other alveoli, since they would all be pumping liquid out with no neighbours
predicted to accept the liquid. A more complex model would be required to handle
flow from one alveolus to another.

Espinosa & Kamm (1997) modelled the liquid lining of an airway and its behaviour
when a non-uniform, oscillatory axial wall strain is applied in the presence of a soluble
surfactant. They modelled sorption kinetics assuming a constant bulk concentration
of surfactant. The predictions are for net fluid transport toward the stiffer end of the
airway, corresponding to the proximal end of the bronchial tree. They also mentioned
that their model could be used to develop an understanding of liquid flows near an
alveolar corner created by two septal planes. In all of the above analyses, however,
capillarity is negligible owing to relatively low surface tension in an environment
of normal surfactant levels. These studies suggest that the wall’s periodic motion
encourages clearance of liquid from the lung, though no process is modelled to
replace the liquid for maintaining homeostasis. Zelig & Haber (2002) considered a
fluid and surfactant replacement model allowing cross-flow through the alveolar wall
to maintain average alveolar liquid volume.

In the present study, we are interested in alveolus ‘A’ of figure 1(a). This alveolus
is surrounded by many other alveoli, and is not near an airway. We describe such
alveoli as having a two-dimensional, cluster-type structure as depicted in figure 1(b).
A thin liquid layer with a soluble surfactant coats the inside of the alveolus. During
expiration, the alveolus contracts and the film thickens whereas for inspiration, the
alveolus expands and the film thins. In this case, we assume there is no net transport
between adjacent alveoli within the time scale of an oscillation. For simplicity, we
shall follow Podgorski & Gradon (1990) with the assumption of impermeable alveolar
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walls and choose a pinned-end condition such that the interface is fixed at the vicinity
of alveolar outlet. However, we choose a no-flux condition for surfactant and liquid
at the outlet in order to understand an ‘A-type’ alveolus better.

Let us discuss further the liquid lining in an alveolus. The thickness of the fluid
layer is about 0.1 µm (Bastacky et al. 1995) and much smaller than an alveolar
diameter. In fact, an alveolus can be regarded as consisting of flat septal faces. The
liquid lining is continuous and is approximately flat along most of the alveolar wall,
except near the septal intersections where the layer can be thicker. Espinosa & Kamm
(1997) have proposed that flow in these corners owing to wall oscillations may be a
means of preventing dry spots on the alveolar wall. However, our model deals with
larger-scale motions based on the entire alveolar geometry. Since flat wall regions
normally occupy most portions of the periphery of the alveolar membrane, we can
regard the thin-layer region as the primary flow contribution.

In this paper, we model the alveolar flow as in figure 2, which describes a two-
dimensional, liquid-filled system that undergoes a sinusoidal oscillation and contains
insoluble or soluble surfactants at the interface. Note that in order to assess the impact
of the capillary force particularly due to the alveolar wall’s curvature, as we see later
in the formulation, we add the corresponding term to the interfacial curvature in the
normal stress condition. We shall apply lubrication theory to derive a set of coupled
evolution equations for the liquid thickness and surfactant distribution in our model.
However, lubrication theory is only valid for the flow region far away from the pinned
wall. For completeness, the flow should consist of two distinct regions: the outer core
region described by lubrication theory, and the inner rigid endwall region. Similar to
Sen & Davis (1982) for thermocapillary flows, and Cormack, Leal & Imberger (1974)
for natural convection flows, we also develop a matched asymptotic theory to solve
the inner region problem in the present problem.

2. Mathematical model
2.1. Governing equations and boundary conditions

We consider a viscous fluid layer with density, ρ, and viscosity, µ lying on a planar
stretchable membrane as shown in figure 2. The fluid is pinned at the left-hand end of
the wall with height d. The membrane underneath the fluid extends or contracts in the
x∗-direction during inhaling or exhaling of a breathing cycle. The length of the (half)
membrane is a∗(t) with its cycle-average length a0. The right-hand end at x∗ = a∗(t)
is a line of symmetry. The air–liquid interface is denoted by y∗ = h∗(x∗, t∗). The flow
velocities in the x∗ and y∗ components are u∗ and v∗, respectively, and the pressure
is p∗. The liquid layer contains a soluble surfactant with the bulk concentration
C∗(x∗, y∗, t∗) and the surface concentration Γ ∗(x∗, t∗) at the interface.

The governing equations for fluid’s motions are

∇∗ · v∗ = 0, (2.1)

ρ[v∗
t∗ + v∗ · ∇∗v∗] = −∇∗p∗ + µ∇∗2v∗ + ρg∗, (2.2)

where g∗ is the gravitational vector. The system is subject to the following boundary
conditions for the flow problem.

Along the stretching impermeable membrane wall at y∗ = 0, the fluid and wall
velocities are equal,

u∗(x∗, 0, t∗) = u∗
wall(x

∗, t∗), v∗(x∗, 0, t∗) = 0, (2.3)
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where u∗
wall is the velocity of the membrane. Owing to periodic breathing, the length

a∗(t∗) of the membrane varies with time in the following manner:

a∗(t) = a0(1 + ∆ sin(ωt∗)), (2.4)

where ∆ is the strain amplitude of membrane stretching and ω is the breathing
frequency. Then assuming a model of uniform strain, the location of a material point
ξ ∗ ∈ [0, a0] is expressed as x∗ = ξ ∗[1 + ∆ sin(ωt∗)]. Then the wall velocity is

u∗
wall = ξ ∗ω∆ cos(ωt∗) =

∆ cos(ωt∗)

1 + ∆ sin(ωt∗)
x∗. (2.5)

As a result, u∗
wall is proportional to x∗ at any instant.

For the lateral boundaries, we impose a pinned condition and a symmetry condition
for the interface shape:

h∗(0, t∗) = d/a0, (2.6)

h∗
x(a

∗(t∗), t∗) = 0. (2.7)

The no-slip and no-penetration conditions at the pinned wall are

u∗(0, y∗, t) = v∗(0, y∗, t) = 0. (2.8)

There is more discussion about the boundary conditions at the pinned wall in § 5.5.
Since the fluid volume is conserved in the domain, applying h∗

t∗ = −Q∗
x∗ where

Q∗(x∗, t∗) is the local flow rate across the fluid layer, and Leibnitz formula for
differentiating an integral yields

Q∗(a(t∗), t∗) = (u∗
wallh

∗)|x=a∗(t∗). (2.9)

As we shall see later, this condition will be used for boundary conditions of the liquid
thickness and the surfactant concentration for the outer flow region in § 3.

At the interface y∗ = h∗(x∗, t∗), the kinematic condition is

h∗
t∗ + u∗h∗

x∗ − v∗ = 0. (2.10)

The normal and tangential stress balances on the interface are, respectively,

−p∗ + µn · (∇∗v∗ + ∇∗v∗T ) · n = −σ ∗(∇∗
s · n), (2.11)

µt · (∇∗v∗ + ∇∗v∗T ) · n = t · ∇∗
s σ

∗, (2.12)

where n and t are unit normal and tangential vectors of the interface as defined in
figure 2, ∇∗

s = (I − nn) · ∇∗ is the surface gradient operator, σ ∗ is the surface tension
and is a function of the surface concentration Γ ∗. For simplicity, we assume a linear
equation of state for σ ∗(Γ ∗):

σ ∗ = σ ∗
0 −

(
∂σ ∗

∂Γ ∗

)
0

(Γ ∗ − Γ ∗
0 ), (2.13)

where σ ∗
0 and Γ ∗

0 are the surface tension and the corresponding surface concentration
for the non-stretching system. For a normal lung, Γ ∗ could be as high as the maximum
packing density of surfactants Γ ∗

∞. However, for a lung with respiratory disease due to
lack of surfactants, the surfactant concentration could be very dilute (Γ ∗ � Γ ∗

∞). Since
most previous studies for modelling alveolar flow are focused on high-concentration
regimes as occurs in a normal lung, we would like to extend the analysis to the
case where surfactants are lacking. We shall discuss this in more detail in the next
subsection.
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The normal stress condition contains capillary forces working together with the
curvature of the interface ∇∗

s · n. The surface tension gradient due to non-uniform
surfactant distribution along the interface generates the Marangoni force, which
creates a flow from a region of lower surface tension (higher surfactant concentration)
to a region of higher surface tension (lower surfactant concentration). The Marangoni
stress balances viscous shear in the tangential stress condition, (2.12).

The surfactant transport along the interface is described by the following equation
(Stone 1990):

Γ ∗
t∗ + ∇∗

s · (v∗
sΓ

∗) − Ds∇∗2
s Γ ∗ + (∇∗

s · n)Γ ∗(v∗ · n) = J ∗, (2.14)

where the surface diffusivity is Ds , v∗
s is the surface velocity, and v∗ · n in the normal

velocity component to the interface. For the left-hand side of (2.14), the first three
terms represent the accumulation, the surface convection and surface diffusion, while
the last term is the variation in surfactant concentration resulting from the local
stretching and deformation of the interface. On the right-hand side of (2.14), J ∗ is a
diffusive flux from the bulk to the interface. This flux is equal to the net sorption flux
at the interface. We assume linear sorption kinetics in the form:

J ∗ = k1C
∗
s − k2Γ

∗ = −Db(n · ∇C∗)|y∗=h∗, (2.15)

where k1 and k2 are the rate constants of adsorption and desorption, respectively, and
C∗

s denotes the surface sublayer concentration. Db is the bulk diffusivity.
The bulk concentration is governed by the convection–diffusion equation,

C∗
t∗ + v∗ · ∇C∗ = Db∇2C∗. (2.16)

We assume that surfactants are impermeable to the membrane for this first model.
Therefore, the boundary condition is

C∗
y∗(x∗, 0, t∗) = 0. (2.17)

Similarly, the impermeable and symmetry conditions at the lateral boundaries require

C∗
x∗(0, y∗, t∗) = C∗

x∗(a∗(t∗), y∗, t∗) = 0. (2.18)

We also have two global constraints because neither fluid nor surfactants leave the
domain. They are consequences of transport equations and boundary conditions.
The volume of the liquid film has to be a constant:

∫ a∗(t∗)

0

h∗(x∗, t∗) dx∗ = V ∗
0 , (2.19)

where V ∗
0 is the volume (per unit length) of liquid. For the surfactant,

∫ a∗(t∗)

0

Γ ∗(x∗, t∗) ds∗ +

∫ a∗(t∗)

0

∫ h∗(x∗,t∗)

0

C(x∗, y∗, t∗) dy∗ dx∗ = M∗
s , (2.20)

where ds∗ is a differential arclength along the interface, and M∗
s is the total amount

of the surfactant.
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2.2. Scaling

We now non-dimensionalize the problem according to the following scales:

t = ωt∗, x =
x∗

a0

, y =
y∗

d
, u =

u∗

U
, v =

v∗

(Ud/a0)
,

p =
p∗

(µa0U/d2)
, σ =

σ ∗

σ ∗
0

, Γ̂ =
Γ ∗

Γ ∗
∞

, Ĉ =
C∗

(k2Γ ∗
∞/k1)

,


 (2.21)

where U = ωa0 is a characteristic velocity. Since gravity is negligible at the alveolar
level, the dimensionless governing equations for the fluid motions are

ux + vy = 0, (2.22)

Re ε2[ut + uux + vuy] = −px + ε2uxx + uyy, (2.23a)

Re ε4[vt + uvx + vvy] = −py + ε4vxx + ε2vyy, (2.23b)

where we introduce an aspect ratio ε = d/a0 � 1 in the present problem, since the
thickness of the fluid layer is about 0.1 µm (Bastacky et al. 1995). The Reynolds
number and the capillary number are given by Re = ρωa2

0/µ and Ca = µωa0/σ
∗
0 ,

respectively. An alveolus has an average 200 µm diameter (so that half periphery
a0 = 157 µm). For a normal lung, the thickness of a coating fluid layer is about
0.1 µm. In PLV application, however, the fluid layer is expected to be thicker, but
no definite data are available. The present analysis is still applicable to the situation
even when the thickness during PLV is about ten times the normal because it is still
thin compared to the size of the alveolus. Thus, ε ranges from O(10−3) to O(10−2).
Assume that µ = 0.01 g cm−1 s−1 and ρ = 1.0 g cm−3 for the fluid. Consider the
normal breathing frequency of 12 times/min, corresponding to ω ≈ 1, then Re is
O(10−2). The surface tension σ ∗

0 = 1–70 dyn cm−1 yields Ca = 10−4–10−6.
The boundary conditions at the wall are

u(x, 0, t) = uwall(x, t), v(x, 0, t) = 0, (2.24)

where

uwall =
∆ cos(t)

1 + ∆ sin(t)
x. (2.25)

For the lateral boundaries, (2.6)–(2.9) become

h(0, t) = 1, (2.26)

hx(a(t), t) = 0, (2.27)

u(0, y, t) = v(0, y, t) = 0, (2.28)

Q = (uwallh)|x=a(t). (2.29)

The boundary conditions (2.10), (2.11) and (2.12) at the interface y = h(x, t) become

ht + uhx − v = 0, (2.30)

−p +
2ε2(

1 + ε2h2
x

)[
ε2uxh

2
x − εhx(uy + ε2vx) + vy

]
=

ε2

Ca
κ(1 − M(Γ̂ − Γ̂ 0)), (2.31a)

σ = 1 − M(Γ̂ − Γ̂ 0), (2.31b)

1(
1 + ε2h2

x

)[(
1 − ε2h2

x

)
(uy + ε2vx) + 2ε2hx(vy − ux)

]
= − εM

Ca
(
1 + ε2h2

x

)1/2
Γ̂ x, (2.32)
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where κ is the interfacial curvature and the Marangoni number M = −(Γ ∗
∞/σ ∗

0 ) ×
(∂σ ∗/∂Γ ∗)0. Notice that calculated κ using planar geometry does not capture the
circumferential component that may cause drainage for more realistic alveolar
geometry. In order to assess this effect we derive κ:

κ = 1 + ε(hxx + h) + O(ε2). (2.33)

When the fluid layer is thin, the above is equivalent to the curvature transformed from
that in polar coordinates. The constant curvature part can be absorbed by redefining
pressure. For (2.33), the second term is the same as that in planar geometry and the
third term arises from the circumferential curvature due to alveolar geometry.

Let us discuss the validity of the dimensionless equation of state, (2.31b). As
mentioned for (2.13), the surfactant concentration could be high in a normal lung or
low in a diseased lung. Estimation from the equation of state for pulmonary surfactant
DPPC measured by Schurch et al. (1989) suggests that, M = O(1) for Γ̂ < 0.2, and
M = O(10−2) ∼ O(10−3) for Γ̂ > 0.8. It is worth noting that the surfactant activity
is expected to be small when the surfactant concentration is close to the maximum
packing concentration. As we shall show later, we can develop scaling analysis and a
model to capture mechanisms working in both low and high surfactant concentration
regimes.

The evolution for the surfactant transport along the interface becomes

Γ̂ t +
∂

∂x

(
Γ̂ (u + ε2vhx)(

1 + ε2h2
x

)
)

+
Γ̂ (u + ε2vhx)hxhxxε

3(
1 + ε2h2

x

)2

− 1

Pes

(
1 + ε2h2

x

) ∂

∂x

(
1(

1 + ε2h2
x

) Γ̂ x

)
+

Γ̂ κε2(−uhx + v)(
1 + ε2h2

x

)1/2
= Ĵ , (2.34)

where Pes = ωa2
0/Ds is the surface Péclet number. The dimensionless surface flux

Ĵ = J ∗/ωΓ ∗
∞ is

Ĵ = K(Ĉs − Γ̂ ) = − 1

βε2Peb

(Ĉy − ε2hxĈx)y=h(
1 + ε2h2

x

)1/2
, (2.35)

where K = k2/ω is the ratio of the cycle to the desorption time scales, Peb = ωa2
0/Db

is the bulk Péclet number, and β = k1/(k2d) is the ratio of desorption to adsorption
time scales and represents the solubility of the surfactant. Note that β depends on the
thickness of the fluid layer. For larger β , the surfactant tends to be more insoluble
because it has more difficulty being desorbed into the bulk.

The dimensionless governing equation for bulk concentration is

ε2Peb(Ĉt + uĈx + vĈy) = ε2Ĉxx + Ĉyy, (2.36)

and is subject to the boundary conditions:

Ĉx(0, y, t) = Ĉx(a(t), y, t) = 0. (2.37)

The global constraints for fluid volume and amount of surfactant are∫ a(t)

0

h(x, t) dx = V0, (2.38)
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0

Γ̂ (x, t) ds +
1

β

∫ a(t)

0

∫ h(x,t)

0

Ĉ(x, y, t) dy dx = Ms, (2.39)

where V0 and Ms are now scaled by a0d and Γ ∗
∞a0, respectively.

We now perform a scaling analysis to further simplify this model. Because Re is
very small, inertia is negligible and the system is governed by the Stokes flow. We
establish the scalings based on the core region as follows. Since the liquid layer is thin
compared with the width of the system (ε � 1), the viscous stress uyy dominates in the
x-momentum in (2.23a). For small Ca, capillarity usually dominates the normal stress
condition. In this case, the pressure is provided by capillarity due to the deformation of
the interface. The normal stress condition (2.31) (after redefining p) gives p ∼ ε3/Ca
at leading order. Note that the presence of surfactants can affect (via M(Γ̂ − Γ̂ 0)) the
surface tension σ for the capillary pressure. As we shall show below, the surfactant
effect on changing the surface tension is of higher order as long as M(Γ̂ − Γ̂ 0) � 1.
Balancing the viscous stress uyy with px in (2.23a) yields Ca ∼ ε3 which means surface
tension effects are strong.

A balance between the viscous shear and the Marangoni stress from the tangential
stress condition, (2.32), gives ε−1uy ∼ −(M/Ca)Γ̂ x . This results in MΓ̂ ∼ ε2 for
Ca ∼ ε3. As a result, the variation of the surface tension due to the presence of
surfactant is O(ε2) and is thus negligible at leading order. MΓ̂ ∼ ε2 leads to two
possible selections of scalings involving surfactant concentration: (i) Γ̂ ∼ ε2 and
M ∼ O(1), or (ii) Γ̂ ∼ O(1) and M ∼ O(ε2). As in the earlier discussion for
the equation of state (2.31b), estimation from the equation of state for pulmonary
surfactant DPPC measured by Schurch et al. (1989) suggests that, M = O(1) for
0 < Γ̂ < 0.2, which is suitable for the scaling option (i), and M = O(10−3) ∼ O(10−2)
for 0.8 < Γ̂ < 1, which works for the scaling option (ii), and allows our analysis to
be used for either normal or low surfactant concentrations.

Let us first complete the scaling analysis in the low Γ̂ regime. For Γ̂ ∼ ε2 and
M ∼ O(1), (2.34) for Γ̂ yields the surface flux Ĵ ∼ ε2. If the bulk diffusion acts rapidly
across the thin layer (i.e. ε2Peb � 1), then the bulk concentration Ĉ from (2.36) is
independent of y at leading order. As a result, the surface flux is kinetic-controlled for
β ∼ O(1) and Ĉs can be replaced by Ĉ. Therefore, for K ∼ O(1) and Ĵ ∼ ε2, Ĉ ∼ ε2.

Similarly, for the O(1) Γ̂ regime, Γ̂ ∼ O(1) and M ∼ O(ε2) yield Ĵ ∼ O(1) and
Ĉ ∼ O(1) when β ∼ O(1) and K ∼ O(1). Accordingly, as we shall see later, the model
formulations for both scalings are identical.

We should make a few comments on the above scalings. They are based on the
balance between the capillary force, the Marangoni force, and the alveolar wall’s
stretching motion. They work in either the low or O(1) Γ̂ regime. In the O(1) Γ̂

regime, however, the capillary force may be weak owing to a low surface tension, i.e.
Ca 	 ε3. In this case, just as in the previous studies (Podgorski & Gradon 1993;
Espinosa & Kamm 1997), only the Marangoni effect and the wall’s stretching motion
play dominant roles in determining the flow. As a result, MΓ̂ ∼ ε−1Ca 	 ε2 that
is applicable for a wider Γ̂ regime. However, when Γ̂ is very close to 1, a more
realistic equation of state rather than (2.13) should be used. Further, the sorptive
kinetics model used in (2.15) is no longer appropriate and more sophisticated
sorptive models should be incorporated (Espinosa & Kamm 1997; Krueger & Gaver
2000).

The present analysis not only works in the high-tension regime, but also can extend
to the low-tension regime, particularly for relatively high surfactant concentration.
Since most previous studies are focused on the low-tension regime, we thus devote
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our efforts to the analysis for the high-tension regime and discuss results compared
to those for the low-tension regime in § 5.3.

3. The outer (core) flow

For the scalings in the low Γ̂ regime, we let Ca = Ĉaε3, where Ĉa is O(1), and
rescale variables by letting

(Γ̂ , Ĉ, Ĵ ) = (ε2Γ, ε2C, ε2J ). (3.1)

The leading-order governing equations for fluid motion become

ux + vy = 0, (3.2)

−px + uyy = O(ε2), (3.3a)

py = O(ε2). (3.3b)

Equations (3.2) and (3.3) can be solved in conjunction with the following leading-order
boundary conditions at the membrane wall and the interface:

u = uwall, v = 0 at y = 0, (3.4)

p = − 1

Ĉa
(hxx + h) + O(ε2) at y = h, (3.5)

uy = − M

Ĉa
Γx + O(ε) at y = h. (3.6)

At leading order, (3.5) is a linearized Young–Laplace equation. The leading-order
pressure is thus provided by the interfacial deformation with the linearized curvature
h + hxx . Also, because of (3.3b), the pressure remains unchanged across the fluid
layer. Thus, a capillary pressure difference due to locally different curvatures of the
interface can drive flows. For (3.6), the Marangoni stress is proportional to the surface
concentration gradient because a linear equation of state is assumed. The solutions
to u and v are given by

u = px

(
1
2
y2 − hy

)
− M

Ĉa
Γxy + uwall, (3.7a)

v = −pxx

(
1
6
y3 − 1

2
hy2

)
+ pxhx

1
2
y2 +

M

Ĉa
Γxx

1
2
y2 − uwall,xy. (3.7b)

where p is given by (3.5). As a result, the flow fields (3.7) consist of three types of flow
mechanism: capillary-driven flow, Marangoni flow, and the flow due to the stretching
of the bottom wall. Notice that (3.7b) generally does not satisfy the no-slip condition
(2.28) at the boundary x = 0. Substituting (3.7) and (3.5) into the kinematic condi-
tion (2.30) yields the following interfacial evolution equation:

ht +

(
1

3Ĉa
h3(hxxx + hx) − M

2Ĉa
h2Γx + uwallh

)
x

= 0. (3.8)

Similarly, the interfacial transport of the surfactant (2.34) becomes

Γt +

(
1

2Ĉa
Γ h2(hxxx + hx) − M

Ĉa
hΓ Γx + uwallΓ − 1

Pes

Γx

)
x

− J = 0. (3.9)
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Note that, in the thin film limit of (2.34), the variation of the surface concentration
due to the interfacial curvature is a higher-order effect (O(ε2)). Although our present
model neglects the effect due to the alveolar curvature on the conservation of the fluid,
(3.8), and surfactant mass, (3.9), the terms uwallh of (3.8) and uwallΓ of (3.9) reflect
the effects due to the variation of the circumference of an alveolus on the fluid and
surfactant mass, respectively. They indeed have similar impacts to the corresponding
terms for the curvature effects in a spherical model studied by Podgorski & Gradon
(1993).

The diffusive flux from the bulk is

J = − 1

βPeb

(Cy − ε2hxCx)y=h + O(ε4). (3.10)

When the vertical diffusion is very rapid such that ε2Peb � 1 as in Jensen & Grotberg
(1993), the bulk concentration can be expanded in powers of ε2Peb:

C(x, y, t) = C0(x, t) + ε2PebC1(x, y, t) + · · ·. (3.11)

Note that the leading order C0 is independent of y. Since the original scaling of
the bulk concentration is O(ε2), the correction due to weak convection is actually
O(ε4Peb). Substituting (3.11) into (3.10) and relating the sorption kinetics gives

J = − 1

β

(
C1,y − 1

Peb

hxC0,x

)
y=h

= K(C0 − Γ )y=h. (3.12)

We then substitute (3.11) into (2.36) for the bulk concentration. This results in

C0,t + uC0,x =
1

Peb

C0,xx + C1,yy + O(ε2Peb, ε
2). (3.13)

Because (3.13) involves the next order C1(x, y, t), we follow the approach as in
Jensen & Grotberg (1993) by taking the cross-sectional average for the concentration.

Define the cross-sectional average Ã of quantity A as Ã ≡ (1/h)
∫ h

0
A dy. Taking the

cross-sectional average for (3.13) yields

C0,t + ũC0,x =
1

hPeb

(hC0,x)x − 1

hPeb

hxC0,x

∣∣∣∣
y=h

+
1

h
C1,y

∣∣∣∣
y=h

− 1

h
C1,y

∣∣∣∣
y=0

, (3.14)

where ũ(x, t) = (1/3Ĉa)h2(hxxx+hx)−(M/2Ĉa)hΓx+uwall is the cross-sectional average
velocity in the x-direction. The impermeable condition at the membrane wall requires
C1,y|y=0

= 0. We use (3.12) to relate J with the second and third terms on the right-
hand side of (3.14). Letting C0 = c for simplicity, we derive the following evolution
equation for the (cross-sectional averaged) bulk concentration:

ct +

(
1

3Ĉa
h2(hxxx + hx) − M

2Ĉa
hΓx + uwall

)
cx − 1

hPeb

(hcx)x +
Jβ

h
= 0. (3.15)

Therefore, a system of coupled equations (3.8), (3.9) and (3.15) govern the interfacial
evolution, the surface concentration and the bulk concentration, respectively. The flux
of the surfactant at the interface J is given by (3.12). These equations are subject to
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the following boundary conditions:

h(0, t) = 1, hx(a(t), t) = 0, (3.16)

(hxxx + hx)|x=0 = 0, hxxx(a(t), 0) = 0, (3.17a,b)

Γx(0, t) = 0, Γx(a(t), t) = 0, (3.18a,b)

cx(0, t) = 0, cx(a(t), t) = 0. (3.19)

Note that (3.17b) and (3.18b) are required to satisfy (2.9) owing to the constant volume
constraint. In addition, for the global constraints of surfactant mass, we should let
Ms → ε2Ms for (2.39) based on the scalings (3.1). The system is at equilibrium when it
is not stretching (i.e. ∆ = 0). This leads to c = Γ = 1. Thus, (2.38) and (2.39) require
Ms = 1 + (V0/β).

For the O(ε2) Γ̂ regime, we have derived the above system of coupled evolution
equations that dictate the behaviour of the liquid film, the surface surfactant distri-
butions, and the bulk concentration for the flow in the central core region. Similar
derivation procedures for the O(1) Γ̂ regime with (Γ̂ , Ĉ, Ĵ , M) → (Γ, C, J, ε2M) can
derive an identical set of equations and boundary conditions.

To examine the response in the limit of small strain amplitude ∆, we expand

h(x, t) = h0(x, t) + ∆h1(x, t) + ∆2h2(x, t) + O(∆3),

Γ (x, t) = Γ0(x, t) + ∆Γ1(x, t) + ∆2Γ2(x, t) + O(∆3),

c(x, t) = c0(x, t) + ∆c1(x, t) + ∆2c2(x, t) + O(∆3).


 (3.20)

We substitute these expressions into the governing equations and boundary conditions
and solve a problem at each order in ∆. Because we are interested in cycle-averaged
quantities, as we shall see later, in order to obtain a non-zero cycle average, it is
necessary to solve the problem up to O(∆2). Therefore, we must assume ∆2 	 ε in
order for the expansions to remain valid up to O(∆2) at the leading order in ε.

3.1. The O(∆0) problem

At O(∆0), since the wall motion represents the only driving force in the problem,
the system remains static. Any temporal transitions at this order are due to non-
equilibrium initial conditions for the interface shape or surfactant concentration. We
do not consider this transition and take this static state as the base state. Therefore,
the pressure is purely hydrostatic, i.e. no capillary pressure gradient, and uniform
surfactant distribution. Thus, (3.8) reduces to the following equation governing the
static interface:

h0,xxx + h0,x = 0, (3.21)

with

h0(0) = 1, h0,x(1) = 0,

∫ 1

0

h0(x) dx = V0. (3.22)

The solution to (3.21) is

h0(x) = k + (1 − k) cos(x) + tan(1)(1 − k) sin(x),

k = (V0 − tan(1))/(1 − tan(1)).

}
(3.23a)

When the liquid volume V0 = 1, the interface at this order is flat. It is clear that
larger (smaller) V0 leads the interface to become convex (concave). It is also evident
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that the corresponding surfactant concentration is uniform everywhere, i.e.

Γ0(x) = c0(x) = 1. (3.23b)

3.2. The O(∆) problem

At O(∆), the effect of wall motion is introduced. The resulting equations and boundary
conditions are expected to be non-homogeneous with terms that are time periodic.
Equations (3.8), (3.9) and (3.15) at this order reduce to

h1,t +

(
1

3Ĉa
h3

0(h1,xxx + h1,x) − M

2Ĉa
h2

0Γ1,x

)
x

= −(h0 + xh0,x) cos(t), (3.24)

Γ1,t +

(
h2

0

2Ĉa
(h1,xxx + h1,x) − M

Ĉa
h0Γ1,x − 1

Pes

Γ1,x

)
x

− K(c1 − Γ1) = − cos(t), (3.25)

c1,t − 1

Pebh0

(h0c1,x)x +
βK

h0

(c1 − Γ1) = 0. (3.26)

Note that the convective term of (3.15) does not contribute to (3.26) for the bulk
surfactant transport at O(∆). The corresponding boundary conditions are

h1(0, t) = 0, h1,x(1, t) = − sin(t)h0,xx(1),

(h1,xxx + h1,x)|x=0 = 0, h1,xxx(1, t) = − sin(t)h0,xxxx(1),

Γ1,x(0, t) = 0, Γ1,x(1, t) = 0,

c1,x(0, t) = 0, c1,x(1, t) = 0.




(3.27)

The volume and surfactant mass constraints are∫ 1

0

h1(x, t) dx = − sin(t)h0(x = 1),

∫ 1

0

Γ1(x, t) dx +
1

β

∫ 1

0

h0(x)c1(x, t) dx = − sin(t).

(3.28)

Because we are interested only in the long-time response to the wall’s temporally
periodic stretching, the homogeneous solutions corresponding to initial transition
states are not considered here. Observing (3.24)–(3.28) whose inhomogeneous terms
are proportional to sin(t) or cos(t), the solutions can be thus expressed as:

h1(x, t) = A(x) cos(t) + B(x) sin(t),

Γ1(x, t) = D(x) cos(t) + E(x) sin(t),

c1(x, t) = R(x) cos(t) + S(x) sin(t).


 (3.29)

Substituting (3.29) into (3.24)–(3.26) produces a system of coupled ordinary differential
equations for unknown coefficients A, B, D, E, R and S. We solve them by using
a shooting method in conjunction with a multi-dimensional root finder. The
corresponding velocities are

u1 =
1

Ĉa
(h1,xxx + h1,x)

(
h0y − 1

2
y2

)
− M

Ĉa
Γ1,xy + x cos(t), (3.30a)

v1 =
1

Ĉa
(h1,xxxx + h1,xx)

(
1
6
y3 − 1

2
h0y

2
)

− 1

Ĉa
(h1,xxx + h1,x)h0,x

y2

2

+
M

Ĉa
Γ1,xx

y2

2
− y cos(t). (3.30b)
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However, because of (3.29), the solutions for the O(∆) problem contribute to zero
cycle averages and we have to solve the problem at order ∆2.

3.3. The O(∆2) problem and cycle-averaged quantities

For the O(∆2) problem, recall that we assume ∆2 	 ε in order to have valid
expansions. The evolution equations (3.8), (3.9) and (3.15) become

h2,t +

(
1

3Ĉa
h3

0(h2,xxx + h2,x) − M

2Ĉa
h2

0Γ2,x

)
x

= −
(

h2
0

Ĉa
h1(h1,xxx + h1,x) − 2M

Ĉa
h0h1Γ1,x + x cos(t)(h1 − h0 sin(t))

)
x

, (3.31)

Γ2,t +

(
h2

0

2Ĉa
(h2,xxx + h2,x) −

(
M

Ĉa
h0 +

1

Pes

)
Γ2,x

)
x

− K(c2 − Γ2)

= −
(

h0

Ĉa
h1(h1,xxx + h1,x) +

h2
0

2Ĉa
Γ1(h1,xxx + h1,x)

− M

Ĉa
(Γ1Γ1,x + h0h1Γ1,x) + x cos(t)(Γ1 − sin(t))

)
x

, (3.32)

c2,t − 1

Pebh0

(h0c2,x)x +
βK

h0

(c2 − Γ2)

= −c1,x

(
h2

0

3Ĉa
(h1,xxx + h1,x) − M

2Ĉa
h0Γ1,x + x cos(t)

)

+
1

Peb

(
1

h0

h1,xc1,x − h0,x

h2
0

h1c1,x

)
+

βK

h2
0

h1(c1 − Γ1). (3.33)

The boundary conditions at this order are

h2(0, t) = 0, h2,x(1, t) = − sin(t)h1,xx(1, t) − 1
2
sin2(t)h0,xxx(1),

(h2,xxx + h2,x)|x=0 = 0, h2,xxx(1, t) = − sin(t)h1,xxxx(1, t) − 1
2
sin2(t)h0,xxxxx(1),

Γ2,x(0, t) = 0, Γ2,x(1, t) = − sin(t)Γ1,xx(1, t),

c2,x(0, t) = 0, c2,x(1, t) = − sin(t)c1,xx(1, t).




(3.34)

Similarly, the volume and surfactant mass constraints are∫ 1

0

h2(x, t) dx = − sin(t)h1(1, t),∫ 1

0

Γ2(x, t) dx + sin(t)Γ1(1, t)

+
1

β

(∫ 1

0

h0(x)c2(x, t) dx+

∫ 1

0

h1(x)c1(x, t) dx + sin(t)h0(x)c1(1, t)

)
= 0.




(3.35)

To determine the induced, steady-streaming at this order, we average the above
equations and boundary conditions over a period of the oscillation. The cycle averages
for terms containing cos(t) sin(t) are zero, but those for cos2(t) or sin2(t) are non-zero
and produce net steady quantities. The terms h2(x), Γ 2(x), and c2(x) (where overbars
indicate cycle-averaged quantities) are determined by using the same numerical
techniques as in the first-order problem. The cycle-averaged velocity components
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at this order are

u2 = − 1

Ĉa
(h2,xxx + h2,x)

(
1
2
y2 − h0y

)
+

1

Ĉa
(h1(h1,xxx + h1,x))y − M

Ĉa
Γ 2,xy, (3.36a)

v2 =
1

Ĉa
(h2,xxxx + h2,xx)

(
1
6
y3 − 1

2
h0y

2
)

− h0,x

Ĉa
(h2,xxx + h2,x)

(
1
2
y2

)

− (h1(h1,xxx + h1,x))x
y2

2Ĉa
+

M

Ĉa
Γ 2,xx

1
2
y2. (3.36b)

Note that the cycle-averaged flow fields (3.36) do not contain the wall’s stretching
motions since uwall is zero. However, the stretching motions have an explicit impact
on the O(∆) flow fields on which those of O(∆2) depend.

4. The inner (boundary-layer) flow near the pinned wall
The core flow as shown in the previous section is only valid for the region

where the horizontal length scale is much longer that the vertical one. For the fluid
near the pinned wall where both length scales are comparable, its motion should be
otherwise analysed.

In this region, the characteristic length scale should be the wall’s height d . The
corresponding velocity scale is ωd . As such, we rescale the length scales and velocities
in both x- and y-directions, and the pressure by

X = x/ε, Y = y. (4.1)

U = u/ε, V = v, P = p/ε2. (4.2)

For surfactant transport quantities, we let ˜̃Γ , ˜̃C and ˜̃J denote the surface concentra-
tion, the bulk concentration and the diffusive flux in the inner region, respectively.

Note that ˜̃Γ , ˜̃C and ˜̃J should be scaled by ε2 just as in the outer region. We then let

( ˜̃Γ , ˜̃C, ˜̃J ) = (ε2Γ̃ , ε2C̃, ε2J̃ ). The governing equations for the fluid motion become

UX + VY = 0, (4.3)

Re ε2[Ut + UUX + V UY ] = −PX + UXX + UYY , (4.4a)

Re ε2[Vt + UVX + V VY ] = −PY + VXX + VYY . (4.4b)

Note that Re ε2 = ρωd2/µ should be recognized as the Reynolds number for the
inner region. The associated boundary conditions at the wall are

U = V = 0 at X = 0, (4.5)

and

U =
∆ cos(t)

1 + ∆ sin(t)
X, V = 0 at Y = 0. (4.6)

At the interface Y = H (X, t), the kinematic, normal stress and tangential stress
boundary conditions become

V = Ht + UHX, (4.7)

−P +
2(

1 + H 2
X

)[
UXH 2

X − HX(UY + VX) + VY

]
=

κ

εCa
[1 − ε2MΓ̃ ], (4.8)

1(
1 + H 2

X

)[(
1 − H 2

X

)
(UY + VX) + 2HX(VY − UX)

]
= − ε2M

εCa
(
1 + H 2

X

)1/2
Γ̃ X. (4.9)
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Again, εCa = µωd/σ ∗
0 is the capillary number for the inner region. The surfactant

transport equation along the interface becomes

Γ̃ t +

(
Γ̃ (U + V HX)(

1 + H 2
X

)
)

X

− 1

ε2Pes

∇̃2
s Γ̃ +

Γ̃ κ(−UHX + V )(
1 + H 2

X

)1/2
= J̃ , (4.10)

and

J̃ = K(C̃s − Γ̃ ) = − 1

βε2Peb

(C̃Y − HXC̃X)(
1 + H 2

X

)1/2
, (4.11)

where ε2Pes = ωd2/Ds and ε2Peb = ωd2/Db are the surface and the bulk Péclet
numbers, respectively, for the inner region. Recall that ε2Peb � 1 has been assumed
for deriving the evolution equation of the bulk concentration (3.15) in the outer core
region. The required boundary condition for Γ̃ is

Γ̃ X(X = 0) = 0. (4.12)

The appropriate matching conditions are

lim
X→∞

εU = lim
x→0

u, lim
X→∞

V = lim
x→0

v as ε → 0, (4.13a,b)

lim
X→∞

Γ̃ = lim
x→0

Γ as ε → 0. (4.14)

For the concentration C̃ in the inner region, the equation is

Pebε
2[C̃t + V C̃X + V C̃Y ] = C̃XX + C̃YY . (4.15)

The boundary conditions and matching conditions are

C̃Y (Y = 0) = 0, (4.16)

K(C̃s − Γ̃ ) = − 1

βε2Peb

(C̃Y − HXC̃X)(
1 + H 2

X

)1/2
at Y = H, (4.17)

C̃X(X = 0) = 0, (4.18)

lim
X→∞

C̃ = lim
x→0

C as ε → 0. (4.19)

With the above general formulation for the inner region, we now begin to consider
the leading-order solution. Since we are interested in the leading-order cycle-averaged
flow, as we shall show below, we start with an unsteady problem to derive required
boundary and matching conditions for the cycle-averaged inner flow field.

At the leading order in ε, we now introduce Ψ as the stream function in the inner
region. Then the fluid motion is governed by the biharmonic equation:

∇̃4Ψ = 0 (4.20)

where U = ΨY , V = −ΨX and ∇̃2 = ∂2/∂X2 + ∂2/∂Y 2. The boundary condition at
Y = 0 is still (4.6). Note that the cycle-averaged U (Y = 0) = 0. For the boundary
conditions at the interface, the scaling Ca ∼ ε3 leads (4.8) to

κ = 0, (4.21)

with boundary condition and matching conditions

H (X = 0) = 1, (4.22)

lim
X→∞

H = lim
x→0

h = 1 as ε → 0. (4.23)
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The solution is

H = 1. (4.24)

Thus, the leading-order interface remains flat throughout the inner region. It im-
mediately follows from (4.7) that

V (Y = H ) = 0. (4.25)

Similarly, for Γ̃ ∼ O(1), Ca ∼ ε3 and M ∼ O(1), the Marangoni stress dominates in
(4.9) at leading order:

Γ̃ X = 0. (4.26)

Applying (4.14) leads to the solution

Γ̃ = Γ̃ (t) ≡ Γ (x → 0, t). (4.27)

Thus, the leading-order surface concentration is spatially uniform in the inner region.
It is just the inner limit of the outer surface concentration. Along with (4.24) and
(4.27), (4.10) and (4.11) become

Γ̃ t + UX|
Y=1

Γ̃ = J̃ . (4.28)

J̃ = K(C̃ − Γ̃ )Y=1 = − 1

βε2Peb

C̃Y |
Y=1

. (4.29)

For ε2Peb � 1, the leading order of (4.15) is a steady diffusion equation:

C̃XX + C̃YY = 0. (4.30)

The leading-order boundary condition (4.29) gives the diffusive flux C̃Y (Y = 1) = 0
at the interface. Since there is also no flux across the wall from (4.16), the
resulting concentration does not have a gradient across the liquid layer, namely,
C̃ = C̃(X, t). Solving C̃ from (4.30) with boundary conditions (4.18) and (4.19)
yields

C̃ = C̃(t) ≡ C(x → 0, t). (4.31)

As a result, for ε2Peb � 1, the leading-order inner concentration C̃ is simply the inner
limit of the outer concentration and is also spatially uniform. Therefore, the surface
transport of surfactants (4.28) is again kinetic-controlled, that is

Γ̃ t + UX|
Y=1

Γ̃ = K(C̃ − Γ̃ ). (4.32)

Since both Γ̃ and C̃ are functions of time only, (4.32) suggests that

U (Y = 1) = G(t)X, (4.33)

where G(t) can be, in principle, obtained by matching the outer solution from (4.13a)
evaluated at the interface. Therefore, taking the cycle-average of (4.33) leads G to be
a time-independent constant that can be determined from matching with the outer
u = ∆2u2.

Now, we can set up the cycle-averaged inner flow problem. Since the outer variables
(u, v, ψ) are O(∆2), the inner variables (U, V , Ψ ) should also be O(∆2). Let

(U, V , Ψ ) = (∆2U 2, ∆
2V 2, ∆

2Ψ 2) + O(∆3), (4.34)
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then the equations for fluid motion are

U 2 = Ψ 2Y , V 2 = −Ψ 2X, (4.35a)

and

∇̃4Ψ 2 = 0. (4.35b)

The boundary conditions are

Ψ 2 = Ψ 2Y = 0 at Y = 0, (4.36)

Ψ 2Y = F (1)X, Ψ 2 = 0 at Y = 1, (4.37a,b)

Ψ 2X = Ψ 2 = 0 at X = 0, (4.38)

with matching conditions

Ψ 2 → Ψ 2∞, Ψ 2X → Ψ 2∞X as X → ∞, (4.39a,b)

where

Ψ 2∞ = ε−1ψ2(x → 0) = F (Y )X, (4.40)

F (Y ) = − (h2xxxx(0) + h2xx(0))

Ĉa

(
1
6
Y 3 − 1

2
Y 2

)
− M

2Ĉa
Γ 2xx(0)Y 2

=
M

4Ĉa
Γ 2xx(0)(−Y 3 + Y 2). (4.41)

Note that in (4.40), we have used the condition v2(x → 0, y = 1) = 0 from the cycle-
averaged evolution equation (3.36b) in the outer region to relate (h2xxxx +h2xx)|x=0

and
Γ 2xx(0):

(h2xxxx + h2xx)|x=0
= 3

2
MΓ 2xx(0). (4.42)

Note that (4.40) also satisfies (4.37) and this is consistent with the matching condition
evaluated at Y = 1.

It is now sufficient to determine the cycle-averaged inner flow field from (4.35)–
(4.39). In view of the matching conditions (4.39), it is convenient to write the solution
as

Ψ 2 = Ψ 2∞ + Φ. (4.43)

Substituting (4.43) into (4.35)–(4.39) and knowing ∇̃4Ψ 2∞ = 0 gives

∇̃4Φ = 0, (4.44)

with boundary conditions

Φ = ΦY = 0 at Y = 0, (4.45)

Φ = ΦY = 0 at Y = 1, (4.46)

ΦX = −F (Y ), Φ = 0 at X = 0. (4.47)

The required matching conditions become

Φ → 0, ΦX → 0 as X → ∞. (4.48)

To obtain the analytic solution for Φ , we extend a method developed by Benthem
(1963) who employed Laplace transform theory. Cormack et al. (1974) applied this
method for natural convection in a shallow cavity. We change variables by letting

Y ′ = 2Y − 1, X′ = 2X. (4.49)
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We decompose the problem into an even and an odd part, and then add the solutions
after solving each part. Let

Φ = Φeven + Φodd. (4.50)

The resulting boundary condition (4.47) becomes

ΦX′(X′ = 0) = (Φeven)X′ |
X′=0

+ (Φodd)X′ |
X′=0

, (4.51)

(Φeven)X′ |
X′=0

=
M

8Ĉa
Γ 2xx(0)

(
1
8
Y ′2 − 1

8

)
, (Φodd)X′ |

X′=0
=

M

8Ĉa
Γ 2xx(0)

(
1
8
Y ′3 − 1

8
Y ′).

Unlike the situations studied by Benthem (1963) and Cormack et al. (1974) whose
solutions are only even in Y ′, our solution for Φ should include both even and odd
parts because of ΦX′(X′ = 0). Following a similar procedure to Benthem (1963), we
expand all derivatives evaluated at X′ = 0 in cosine and sine series for even and odd
parts, respectively. The even solution is given by

Φeven =

∞∑
k=1

∞∑
n=1

(2n − 1)π sin
(

1
2
(2n − 1)π

)
(
s2
k − 1

4
(2n − 1)2π2

)2

×
((

s2
k − 1

2
(2n − 1)2π2

)
dn − skan + bn

)
feven(Y

′, sk) exp(−skX
′). (4.52)

where feven(Y
′, s)=(sin(s) cos(sY ′)−cos(s)Y ′ sin(sY ′))/4 cos2(s) are the even Papkovich–

Fadle eigenfunctions (Joseph 1977; Joseph & Sturges 1978). The coefficients dn, an

and bn are defined by the following and the latter two are unknowns.

(Φeven)X′ |
X′=0

=

∞∑
n=1

dn cos
(

1
2
(2n − 1)πY ′), (4.53a)

where

dn =
M

8Ĉa
Γ 2xx(0)

(
4(−1)n

(2n − 1)3π3

)
.

(Φeven)X′X′ |
X′=0

=

∞∑
n=1

an cos
(

1
2
(2n − 1)πY ′), (4.53b)

and

(Φeven)X′X′X′ |
X′=0

=

∞∑
n=1

bn cos
(

1
2
(2n − 1)πY ′). (4.53c)

Here, sk (k = 1, 2, . . . , ∞) are the complex eigenvalues (with positive real part)
determined by the transcendental equation

sin(2sk) + 2sk = 0. (4.54)

an and bn are determined by the following infinite system of equations:

∞∑
n=1

(2n − 1)π sin
(

1
2
(2n − 1)π

)
(
s2
k − 1

4
(2n − 1)2π2

)2

((
s2
k − 1

2
(2n−1)2π2

)
dn+skan+b

)
= 0 (k = 1, 2, . . . , ∞).

(4.55)

In practice, we must solve them approximately by a truncated matrix. The necessary
number of sk is required and is in order of increasing real part. Furthermore, as
pointed out by Cormack et al. (1974), the complex conjugate sk of sk is also the root
of (4.54). This guarantees that the imaginary part of the solution is zero.
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The odd solution is given by

Φodd = −
∞∑

k=1

∞∑
n=1

2nπ cos(nπ)(
ŝ2
k − 1

4
(2n)2π2

)2

(
ŝ2
k − 1

2
(2n)2π2d̂n − ŝkân + b̂n

)
fodd(Y

′, ŝk) exp(−ŝkX
′),

(4.56)

where fodd(Y
′, ŝ) = (cos(s) sin(ŝY ′)−sin(ŝ)Y ′ cos(ŝY ′))/4 sin2(ŝ) are the odd Papkovich–

Fadle eigenfunctions (Joseph 1977; Joseph & Sturges 1978). The coefficients d̂n, ân

and b̂n are defined by the following:

(Φodd)X′ |
X′=0

=

∞∑
n=1

d̂n sin(nπY ′), (4.57a)

where

d̂n =
M

8Ĉa
Γ 2xx(0)

(
3(−1)n

2n3π3

)
,

(Φodd)X′X′ |
X′=0

=

∞∑
n=1

ân sin(nπY ′), (4.57b)

(Φodd)X′X′X′ |
X′=0

=

∞∑
n=1

b̂n sin(nπY ′). (4.57c)

The complex eigenvalues ŝk satisfy

sin(2ŝk) − 2ŝk = 0, (4.58)

and ân and b̂n are determined by the following equation in a similar manner to that
described for the even part:

∞∑
n=1

2nπ cos(nπ)(
ŝ2
k − 1

4
(2n)2π2

)2

((
ŝ2
k − 1

2
(2n)2π2

)
d̂n − ŝkân + b̂n

)
= 0 (k = 1, 2, . . . , ∞). (4.59)

Combining the even (4.52) and the odd (4.56) solutions gives the solution for Φ , and
therefore for Ψ 2 from (4.43).

5. Results and discussions
5.1. O(∆) unsteady streamlines in the outer (core) region

As shown in § 3, the flow in the core region is described by lubrication theory. We
also expand the problem for small strain amplitude ∆ by assuming ∆2 	 ε. The zero
order in ∆ is just a static state because of no stretching. The stretching motion is
then introduced at O(∆). Figures 3 and 4 show typical O(∆) unsteady streamlines
(3.30) during a stretching cycle for insoluble (K = 0 or β = ∞) and soluble surfactants,
respectively. Streamlines are drawn in the Eulerian frame. The flow domain is bounded
by the wall (x =0 and y = 0), the unperturbed interface (y = h0 = 1, here for V0 = 1)
and the unperturbed symmetry line (x = 1). Notice that the length scales in both the x-
and y-directions have been rescaled by a0 and d , respectively. As a result, curvatures
of these streamlines in the middle x-core region, say x =0.25 ∼ 0.75, are small and
represent almost parallel stream patterns. This is a result of lubrication theory and is
only valid in the central core region.

We now turn our attention to the streamline patterns of figures 3 for an insoluble
surfactant. We draw eight frames at different time intervals during a stretching cycle.
The system expands towards the extensible end until t = 1

2
π. For expansions as in t = 0
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Figure 3. The O(∆) unsteady streamlines in the presence of an insoluble surfactant. Ĉa = 1,
M = 1, Ps= 10 and V0 = 1. The streamlines are calculated by (3.30). Note that the true
horizontal scale (a0) is much longer than the vertical one (d). The rigid end (the extensible
end) is at x =0 (x = 1). The system expands towards the extensible end during t = 0 and t = 1

2
π.

The contraction during t = 0 and t = 3
2

π lead the fluid to flow towards the rigid end. The
system is then back to the expansion after t = 3

2
π.

and t = 1
4
π, the streamlines flow towards the symmetry line and the layer thins. At

t = 1
2
π the system reaches maximum length, but has zero instantaneous velocity. The

streamline shows a clockwise vortex and the fluid flows towards the rigid end. Since
there is no normal velocity at x = 1 (extensible end) suggested by (3.27) for h0 = 1
at t = 1

2
π, the flow must turn around. As we check the flow mechanism at the end

of expansion, the surface flow direction is toward the extensible end arising from the
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Figure 4. The O(∆) unsteady streamlines in the presence of a soluble surfactant. Ĉa = 1,
M = 1, Ps= 10, Peb = 1, K = 1, β = 1 and V0 = 1. The streamlines are calculated by (3.30). Note
that the true horizontal scale (a0) is much longer than the vertical one (d). The rigid end (the
extensible end) is at x =0 (x = 1). The system expands towards the extensible end during t = 0
and t = 1

2
π. The contraction during t = 0 and t = 3

2
π leads the fluid to flow towards the rigid

end. The system is then back to the expansion after t = 3
2

π.

established surface concentration gradient that is higher at the rigid end. The capillary
pressure, however, tends to drive the flow from the extensible end to the rigid end.

The system contracts between t = 1
2
π and t = 3

2
π, and then expands between t = 3

2
π

and the end of the cycle. At t = 3
2
π the wall contracts to its minimum length, but is

instantaneously at rest again. Similar to t = 1
2
π, a counterclockwise vortex also appears

at t = 3
2
π. In fact, the streamline patterns during contraction are just the reverse of

those during expansion. This is because the O(∆) solution is in the form given by
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Figure 5. The O(∆2) cycle-averaged streamlines in the presence of an insoluble surfactant.
(a) M =0.1, (b) M = 1.0, (c) M = 10.0. Ĉa = 1, Ps= 10, V0 = 1. The streamlines are calculated
by (3.36). Note that the true horizontal scale (a0) is much longer than the vertical one (d). The
rigid end (the extensible end) is at x = 0 (x = 1). At first glance, the upper part of the fluid
flows towards the extensible end while the lower portion of the fluid flows towards the rigid
end. The higher M is the smaller the portion of the fluid that flows towards the rigid end. (b)
(ii) is a zoom-in view of (b) (i) in order to compare with the corresponding inner solution in
figure 13(a).

(3.29). The resulting cycle-averaged quantities are thus zero. Non-symmetry between
expansion and contraction and non-zero cycle-averaged quantities appears at O(∆2).

The O(∆) unsteady streamlines during a stretching cycle for a soluble surfactant are
also shown in figure 4. The streamline patterns are qualitatively similar to those shown
in figure 3 for an insoluble surfactant. However, as we shall see next, depending on
the range of parameters, a soluble surfactant can significantly change the streamline
patterns at O(∆2).

5.2. O(∆2) cycle-averaged streamlines in the outer (core) region

As mentioned above, steady streaming or non-zero cycle-averaged flow fields occur
at O(∆2). Streamlines presented here are drawn in the Eulerian frame. Figure 5
shows O(∆2) cycle-averaged streamlines with different Marangoni numbers, M , for
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Figure 6. The O(∆2) cycle-averaged surface concentration Γ 2 versus x corresponding to
figure 5. The rigid end (the extensible end) is at x = 0 (x = 1). Γ 2 is higher near the rigid
end and decreases as it approaches the extensible end. The gradient of Γ 2 diminishes as M
increases.

an insoluble surfactant. At first glance, the upper portion of the fluid flows towards
the extensible end while the lower portion flows towards the rigid end. This suggests
that the system is favourable to exhalation, since flow resistance is lower as the
liquid thickness becomes gradually thicker during the contraction. Even though the
cycle-averaged wall velocity is zero, it can generate non-zero cycle-averaged capillary
and Marangoni flows. The contraction motion tends to sweep the surfactant from
the extensible end to the rigid end, and thus the associated Marangoni force along
the interface drives the flow to the extensible end. However, this Marangoni flow
competes against the capillary-driven flow. As shown in figure 5, the higher the
value of M , the smaller the portion of fluid that flows towards the extensible end.
Figure 5(b)(ii) is a zoom-in view of figure 5(b)(i) for the core lubrication flow near
the rigid end. Later, we will compare figure 5(b)(ii) with that of the inner solution.
For even higher M(> 10), the streamline patterns do not change significantly because,
as we shall see in figure 6, in this case, the surface concentration gradient almost
vanishes and the interface becomes almost immobile.

To confirm the above observations in figure 5, figures 6 and 7 illustrate the cycle-
averaged surface concentration Γ 2 and the correction to the static liquid thickness h2,
respectively. As shown in figure 6, Γ 2 is higher near the rigid end and decreases as the
extensible end is approached. For a small M(= 0.1), the gradient of Γ 2 is rather steep
near the extensible end. Examining figure 5(a), the distinction between the forward
and reversed flows seems to be nearly a straight line. This suggests that Marangoni
flow, whose horizontal velocity is linear in y, is rather strong. Further increasing
M reduces the level of Γ 2. At large enough M(> 10) the surface concentration is
smaller because it is easier to generate the Marangoni force. In this case, the large
Marangoni stress causes the interface to be almost tangentially immobile (but the
normal interfacial velocity is non-zero). Since the interface is almost rigid for large
enough M , the corresponding cycle-averaged streamlines do not further change. For
the interface shape as shown in figure 7, the interface does not change significantly
as M changes. This is because a strong capillary force serves as a restoring force
when the interface is deformed. More importantly, the liquid thickness is thicker than
the static (∆ = 0) state and exhibits a convex shape. These results of both Γ 2 and
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Figure 7. The O(∆2) cycle-averaged correction to the liquid thickness h2 versus x
corresponding to figure 5. The rigid end (the extensible end) is at x =0 (x =1). The liquid
thickness is greater than the static (∆= 0) state.
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Figure 8. The O(∆2) cycle-averaged streamlines in the presence of a soluble surfactant.
(a) β = 0.1, (b) β = 1.0, (c) β = 10.0. Ĉa =1, M = 1, Ps= 10, Peb = 1, K = 1, V0 = 1. The
streamlines are calculated by (3.36). Note that the true horizontal scale (ao) is much longer
than the vertical one (d). The rigid end (the extensible end) is at x = 0 (x = 1). In comparison
with insoluble cases as in figure 5, a greater portion of the fluid flows towards the extensible
end, particularly for smaller β (higher solubility). Figure 8(a)(ii) is a zoom-in view of (a)(i) in
order to compare with the corresponding inner solution in figure 13(b).

h2 profiles support the idea that contraction (expiration) motion is more favourable
than expansion (inspiration).

We shall now turn our attention to cases involving a soluble surfactant. Figure 8
presents cycle-averaged streamlines of soluble cases with different β . Figure 8(a)(ii)
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Figure 9. The O(∆2) cycle-averaged surface concentration Γ 2 versus x with different K for
(a) β = 0.1, (b) β =1.0, (c) β = 10.0. Ĉa = 1, M =1, Ps= 10, Peb = 1, V0 = 1. The rigid end (the
extensible end) is at x =0 (x = 1). Lower β implies higher solubility of surfactant. Increasing
K enhances the sorption kinetics and thus tends to diminish the gradient of Γ 2.

is a zoom-in view of figure 8(a)(i) of the flow near the rigid end for comparison with
the inner solution as discussed later. For high β = 10, the surfactant behaves like an
insoluble surfactant and the resulting streamlines are similar to those for the insoluble
case. As solubility increases by decreasing β , figures 8(a) and 8(b) show more portions
of the fluid flow towards the extensible end. As we shall see below, this alteration of
cycle-averaged stream patterns is related to the cycle-averaged surface concentration
distribution.

Figure 9 shows Γ 2 as a function of x for different combinations of β and K . Most
trends are similar to those of the insoluble cases. As expected, large β or small K

tends to approach the insoluble behaviour because the solubility or sorption flux
becomes small. For β not large, as shown in figures 9(a) and 9(b), increasing K lowers
the surface concentration and diminishes the surface concentration gradient since the
system tends to reach equilibrium between the bulk and the surface concentration.
However, for smaller β in figure 9(a), larger K(� 1) seems to have a maximum
surface concentration in the middle region. For β = 0.1 and K = 1 in figure 9(a),
desorption is much faster than adsorption but its time scale is comparable to that of
the stretching motion. Contraction enriches the surface concentration near the rigid
end on the one hand; comparable desorption decreases the surface concentration
on the other hand. This competition may lead to a local maximum or minimum
of the surface concentration distribution. A similar competition between adsorption,
desorption and the stretching motion can be found for β = 1 and K = 1. Its subsequent



Cycle-induced flow and transport in a model of alveolar liquid lining 27

surface concentration distribution is shown in figure 9(b). Recall that the resulting
cycle-averaged streamlines for (β, K) = (0.1, 1.0) and (β, K) = (1.0, 1.0) are shown in
figures 8(a) and 8(b), respectively. These non-trivial surface concentration distributions
lead the fluid near the rigid end to flow towards the extensible end in contrast to
the insoluble cases in which part of the fluid near the rigid end flows towards the
extensible end. For larger β , as in figure 9(c), the surface concentration level is
not effectively lowered by increasing K , because the solubility of the surfactant (i.e.
diffusive flux from the bulk) is so low that sorption kinetics is not fast enough to
reach equilibrium.

5.3. Comparison with previous studies

Podgorski and Gradon (Gradon & Podgorski 1989; Podgorski & Gradon 1990, 1993)
investigated the mechanism of clearance flows or liquid pumping in an alveolus.
Podgorski & Gradon (1991) and Espinosa & Kamm (1997) performed similar
studies for the liquid lining of an airway. All studies of Podgorski and Gardon
only considered insoluble surfactant. Espinosa & Kamm (1997) employed a more
sophisticated sorption kinetics model accounting for the contribution from soluble
surfactants. They, however, assumed a constant bulk concentration that lacks the
variation of the bulk concentration caused by interfacial surfactant being desorbed
into or absorbed out of the bulk. Our model considers solubility (via β) of surfactant
that couples with the bulk concentration. When β is small (i.e. a high solubility), the
surfactant transport is sorption-controlled from (2.35) and the bulk concentration is
almost constant. It is equivalent to the assumption that Espinosa & Kamm (1997)
used for the bulk concentration. As shown in figure 8, increasing β leads to different
stream patterns in the lower part (say, y < 0.5) of the domain.

These previous studies focused on the role of the Marangoni force in determining
clearance flows in a normal lung. Since surface tension forces are weak in a normal
lung, their studies exclude capillarity as we shall justify later. All of their results
suggest that the Marangoni force enhances clearance flows toward the more rigid
end. Our study has accounted for capillarity since we can consider the high-tension
regime due to surfactant deficiency. An additional difference from previous works
is the use of boundary conditions at the alveolar outlet. Previous studies specified
the surfactant concentration at the alveolar opening (or the more rigid end of an
airway), and allowed net surfactant and fluid transport into or out of the system. In
our analysis, we impose no flux boundary conditions at the alveolar opening for both
surfactant and fluid.

To compare with previous studies that exclude the capillarity, we must demonstrate
how the surface tension force modifies the cycle-averaged flow patterns. To do so, we
shall fix the strength of the Marangoni force. Figure 10 show the effect of varying Ĉa
with fixed M/Ĉa = 1 on the cycle-averaged flow patterns in the presence of an insoluble

surfactant. Notice that fixed M/Ĉa = − (Γ ∗
∞/µωa)(∂σ ∗/∂Γ ∗)0 means fixed strength

of the Marangoni force while Ĉa varies. This is equivalent to changing the strength of
surface tension. Also note that Ĉa is not restricted to O(1) according to the discussion
in § 2.2, we can extend its range for the large Ĉa (low-tension) regime. As shown
in figure 10, a larger portion of the fluid tends to flow towards the rigid end as
Ĉa increases. For the previous studies for modelling a normal lung, σ ∗

0 = 1 ∼ 10 dyn

cm−1 gives Ca = 10−4 ∼ 10−5 or Ĉa = 104 ∼ 105 for ε = 10−3 (layer thickness = 0.1 µm),
thus the capillary term is negligible in their studies. Nevertheless, the flow pattern of
figure 10(c) for Ĉa = 100 sufficiently captures the flow tendency (i.e. the flow towards
the alveolar opening) in the low-tension regime and qualitatively agrees with those
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Figure 10. The O(∆2) cycle-averaged streamlines in the presence of an insoluble surfactant. (a)
Ĉa = 1, (b) Ĉa = 10, (c) Ĉa = 100. M/Ĉa =1, Ps= 10, V0 = 1. The streamlines are calculated
by (3.36). The true horizontal scale (a0) is much longer than the vertical one (d). The
rigid end (the extensible end) is at x = 0 (x = 1). Changing Ĉa at fixed M/Ĉa is equivalent to
altering the surface tension with the fixed strength of the Marangoni force. Reducing surface
tension promotes more flow towards the rigid end.

of previous investigations. Such similar flow features also suggest that the geometry
effect of an alveolus may not be a major factor to change the flow qualitatively.

The above qualitative agreement also suggests that the qualitative features of such a
flow system may not be too sensitive to detailed boundary conditions at the alveolar
outlet. More importantly, the fact that the less upper portion of the fluid flows
towards the extensible end for large Ĉa suggests that the presence of the surface



Cycle-induced flow and transport in a model of alveolar liquid lining 29

tension force somehow diminishes the flow out of an alveolus owing to the Maran-
goni effect. Therefore, sufficiently strong surface tension could compromise the clear-
ance process. This could have a critical implication to clinical applications such as
PLV. For example, when the fluid thickness during PLV is 10 times thicker than
normal, ε = 10−2 is still within the validity of our model. In this case, Ĉa =10 for
σ ∗

0 = 10 dyn cm−1, say owing to insufficient surfactant. If a given strength of the sur-
factant activity results in the situation as in figure 10(b), it then reduces the surface
flow towards the alveolar opening, and thus discourages clearance processes.

5.4. The Eulerian and Lagrangian drift velocities

The cycle-averaged motion of fluid particles in the Lagrangian reference frame can
be calculated from the Eulerian velocity field derived in § 3 for the core region. The
Lagrangian velocity vector V is defined by

V =

(
∂X
∂t

)
X0

, (5.1)

where the vector X(X0, t) is the fluid mapping or trajectory and X0 is the reference
position. We expand the mapping in small ∆ by

X = X0 + ∆X1(X0, t) + ∆2X2(X0, t) + O(∆3). (5.2)

The corresponding expansion for (5.1) is related to the Eulerian velocity expansion
v = v0(x) + ∆v1(x, t) + ∆2v2(x, t) +O(∆3), knowing that v0 = 0. At x = X0, this yields

V 1 ≡ X1t = v1, (5.3a)

V 2 ≡ X2t = v2 + X1 · ∇v1. (5.3b)

v1 is obtained by integrating (5.3a) and is then substituted into (5.3b). We then
take the cycle average of (5.3b), which yields the steady Lagrangian drift velocity V 2.
Figure 11 shows the steady axial Eulerian drift velocities u2 across the liquid thickness
at different x positions for both insoluble and soluble cases. They are qualitatively
similar: the lower (upper) potion of the fluid flows towards the rigid end (extensible
end). The flow strength for the soluble case seems to be a little weaker than that for
the insoluble case.

The steady axial Lagrangian drift velocities UL2 are also shown in figure 12. They
are rather different to the Eulerian results. The Lagrangian drift velocities for the
upper part of the fluid are toward the rigid end, whereas those for the lower part
are in the opposite direction. The Lagrangian drift velocities are about an order of
magnitude smaller than the corresponding Eulerian ones.

5.5. Cycle-averaged flow in the inner (rigid end) region

We have imposed the pinned-end condition at the rigid end and also do not allow
fluid and surfactants across the rigid endwall for describing the boundary conditions
near the alveolar junction. The true boundary conditions near the junction may be
complex. It is interesting to see how the boundary condition at the rigid end alters
the flow feature. We have noticed that the vertical velocity (3.7b) of the outer solution
does not satisfy the no-slip condition (2.28) at the rigid endwall (x = 0). This suggests
that, if we replace the no-slip condition with a slip condition, but keep the rigid
endwall impermeable, then the outer solution remains unchanged.

For other boundary conditions, we may choose a fixed contact angle but vary d

(i.e. a moving contact line). In this case, surfactant may either accumulate or be
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Figure 11. The O(∆2) steady Eulerian axial drift velocities: (a) insoluble case with Ĉa = 1,
M = 1, Ps= 10, V0 = 1, (b) soluble case with Ĉa = 1, M = 1, Ps= 10, Peb = 1, K = 1, V0 = 1.

depleted near the moving contact point, depending on the slip velocity model.
The resulting cycle-averaged surfactant distribution may behave differently and the
corresponding steady streaming may be altered. If the surface concentration at
the rigid end is fixed instead of setting its derivative to be zero, we expect that the
resulting gradient of the surfactant concentration can generate a non-zero net flow
that requires an additional flow source or sink to replace the fluid for remaining
homeostasis (Zelig & Haber 2002). Such a case would be similar to the previous
works (Gradon & Podgorski 1989; Podgorski & Gradon 1990; Espinosa & Kamm
1997).

We now discuss the inner flow region of the present model. The outer core solution
breaks down near the rigid end. In this inner region, the interface remains flat
because of a small capillary number (εCa = µωd/σ ∗

0 ∼ ε4). In addition, (4.9) suggests
that Marangoni stresses also dominate the tangential stress along the interface for
M ∼ O(1) and Ca ∼ ε3. Thus, the surface concentration is spatially uniform. For fast
diffusion ε2Peb � 1, the bulk concentration is also spatially uniform. This leads the
axial interfacial velocity to be proportional to the distance from the rigid endwall
(see (4.33)). Because there is no cycle-averaged motion of the bottom wall, both
non-zero cycle-averaged interfacial flow and the outer-region flow drive the flow in
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Figure 12. The O(∆2) steady Lagrangian axial drift velocities (a) and (b) corresponding to
figures 11(a) and 11(b), respectively.

the inner region. Figure 13 shows typical cycle-averaged streamlines near the rigid
end. As expected, the fluid coming from the upper (lower) portion of the domain
turns around when it is against the rigid endwall, and then it flows out in the lower
(upper) portion of the fluid. As shown in (4.40) and (4.41), the inner flow’s direction
is determined by the sign of Γ 2xx(x → 0) or (h2xxxx + h2xx)(x → 0) which depends on
the system parameters. For an insoluble case of M = 1 as in figure 6, the cycle-
averaged surface concentration has Γ 2xx(0) = − 0.1044 < 0. The resulting inner flow
turns clockwise as in figure 13(a). To compare it with the outer steady streamlines
near the rigid end, figure 5(b)(ii) is a zoom-in picture for regions near the rigid end
of figure 5(b)(i). The horizontal scale of figure 5(b)(ii) is chosen the same as figure
12(a) for ε =0.001, i.e. x = εX = 0.001X. As a result, the turning direction of the flow
near the rigid end is consistent with figure 13(a). Because the outer solutions satisfy
the impermeable condition near the rigid end, the rigid endwall is thus a streamline.
However, for a soluble case as in figure 9(a) for β = 0.1 and K =1, the surface
concentration profile can have Γ 2xx(0) = 0.9685 > 0. Figure 13(b) shows that the inner
flow turns counterclockwise. It is also consistent with the corresponding steady outer
streamlines of figure 8(a) that the fluid near the rigid end flows from the interface
side and then turns towards the extensible end near the bottom wall.
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Figure 13. The O(∆2) steady inner streamlines. (a) Insoluble case with Ĉa = 1, M = 1, Ps= 10,
V0 = 1, the corresponding outer streamline is shown in figure 5(b)(ii). (b) Soluble case with
Ĉa = 1, M = 1, Ps= 10, Peb = 1, K =1, β =0.1, V0 = 1, the corresponding outer streamline is
shown figure 8(a)(ii). The inner streamlines are calculated by (4.43). Note that the direction of
the returning flow against the rigid wall is determined by the sign of Γ 2xx(x → 0). By examining
figure 9(a), Γ 2xx(x → 0) < 0 for the insoluble case in figure 13(a), but Γ 2xx(x → 0) > 0 for the
soluble case in figure 13(b).

5.6. The effect of liquid volume

The results we have discussed so far are based on uniform film thickness for ∆ =0.
This means that the flow (particularly near the rigid end) may be sensitive to the
condition at the rigid end whose height is the same as the unperturbed liquid thickness.
The detailed boundary conditions at the rigid end are not known in the real system,
but whatever conditions exist, they must have zero net flow for the adjacent alveolus
that are away from the terminal bronchioles. As shown in § 5.3, despite different
boundary conditions applied in the present and previous models, similar qualitative
features imply that detailed boundary conditions at the rigid end may not significantly
change the flow features.

Since the rigid-end condition we imposed for the condition near the alveolar junc-
tion is somewhat speculative, one aim of this section is to examine the circumstances
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Figure 14. The O(∆2) cycle-averaged streamlines. (a) Insoluble case with Ĉa = 1, M = 1,
Ps= 10, V0 = 3. (b) Soluble case with Ĉa = 1, M = 1, Ps= 10, Peb = 1, K = 1, β = 0.1, V0 = 3.

to see if this rigid-end condition is more important or not. As suggested in figure 1(b)
for alveolar geometry, the liquid thickness near the alveolar junction seems to be thin-
ner than in the remaining part of the layer owing to the presence of sharp edges. We
speculate that the flow contribution near the alveolar junction could be less significant
if the rest of the fluid layer is relatively thick. The impact of the rigid-end condition
on the flow could be therefore minimized. To examine this, we increase V0 from
1 (uniform layer thickness) to 3. Figures 14(a) and 14(b) show the cycle-averaged
streamlines for insoluble and soluble surfactants, respectively. These stream patterns
show similar trends in most parts of the domain compared to those of uniform
thickness cases as in figures 5 and 8. However, a larger liquid volume leads to smaller
regions of returning flows near the rigid end than in uniform thickness cases. The
soluble surfactant case with V0 = 3 exhibits a vortex near the extensible end while
that with V0 = 1 does not.
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The fact that the flow features of a large liquid volume are similar to those of a
smaller volume is not surprising because only the no-penetration condition at the rigid
end is satisfied by the outer core flow that is dominant. In addition, as we examine
the inner solution, the liquid thickness remains the same as the height of the rigid
end. Because the liquid volume does not directly enter into the inner problem, the
inner solution is passively determined by the information of the outer core flow that
is affected by the liquid volume. Also, because a large liquid volume further enhances
the contribution from the core flow, the impact of the presence of the rigid end is
further diminished. We also notice that the no-cross-flow condition at the rigid end,
with fixed film height, allows us to consider our solution as satisfying a spatially
periodic configuration such as a cluster of alveoli.

6. Conclusion
We have developed a two-dimensional model to study the effects of breathing motion
on fluid flow in the alveolar liquid lining in the presence of insoluble or soluble
surfactants. We assume that the alveolar wall’s motion is prescribed by a uniform
strain. For a small aspect ratio ε and strain amplitude ∆ (∆2 	 ε), we use scaling ana-
lysis and asymptotic theory to solve transport problems in both the outer (core) and
inner (boundary layer) regions at leading order in ε with small-∆ expansions. The
analysis is based on scalings of Ca ∼ ε3 and M ∼ O(1) for dilute (O(ε2)) surfactant
concentrations. The competition between the wall’s stretching motion, the capillarity
and the Marangoni effect is elucidated for various ranges of the parameters.

In the core region, we apply lubrication theory to derive a coupled set of evolution
equations governing the liquid thickness, the surface concentration and the bulk
concentration of surfactant. The results do not contribute to cycle-averaged quantities
until O(∆2). The cycle-averaged streamline patterns show that the system is favourable
to the expiration phase. This is suggested because the cycle-averaged liquid thickness
is greater than in the non-stretching state and the surfactant concentration is lower
near the extensible end. We qualitatively compare the present results with the previous
studies that exclude capillary forces (Espinosa & Kamm 1997; Gradon & Podgorski
1989; Podgorski & Gradon 1990, 1993). The capillarity tends to enhance the flow
towards the extensible end and diminishes the clearance process.

For the inner (rigid end) region, we solve analytically for the cycle-averaged inner
flow fields using matched asymptotic principles and Laplace transform techniques.
With the present scalings, the interface remains flat. Both the surface and the bulk
concentrations are spatially uniform owing to the strong Marangoni force and the
fast bulk diffusion. The inner steady flow patterns turn around when they are against
the rigid endwall. For certain ranges of β and K , the turning direction of a soluble
surfactant case can be opposite to that of an insoluble case.

Applying larger liquid volume diminishes the influence of the detailed flow boundary
conditions at the rigid end. Since the primary flow contribution comes from the core
region that does not satisfy the no-slip boundary conditions at the rigid end, our
current study can be extended to model flow in a cluster of alveoli.

For a signalling process that requires molecules to transport back and forth between
communicating cells, the cyclic unsteady flow velocity could be critical in addition
to the steady flow. Our analysis estimates a characteristic dimensional unsteady
axial velocity u∗ ∼ 10−3 cm s−1. The Péclet number is Pe= u∗a0/Dm ∼ 10−5/Dm, where
Dm (cm2 s−1) is the diffusivity of molecules. For molecules with Dm ∼ O(10−5 cm2 s−1)
or smaller, Pe ∼ O(1) or larger which suggests that detailed knowledge of the
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convection patterns is important for understanding this potential route for signalling.
For steady molecular transport processes the steady axial velocity is u∗ ∼ 10−5 cm s−1,
and the corresponding steady Péclet number is Pe= u∗a0/Dm ∼ 10−7/Dm. For Dm � O

(10−7 cm2 s−1), such as the pulmonary surfactant DPPC, proteins, delivered surfactants,
drugs and genetic material whose Dm is from 10−7 to 10−8 cm2 s−1, this suggests that
Pe � O(1), implying that convection governs the transport of such molecules.

This work was supported by NIH Grants HL41126 and HL64373.
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